Пусть скорость горной реки х Плот плывет по реке 21 км в течение 21:х часовТуристы на лодке все расстояние проплыли за такое же время: 54:(12+х) плыла лодка по реке + 6:12 по озеру и все это равно времени, за которое плот плывет по реке 21 км, =21:х Составим и решим уравнение: 54:(12+х) +0,5 =21:х Умножим обе части на х(12+х), чтобы избавиться от дробей: 54х +0,5х(12+х) =21(12+х) 54х +6х +0,5х² =252+21х 0,5х²+39х -252=0 D=b²-4ac=39²-4·0.5·-252=2025 Так как дискриминант больше нуля, то уравнение имеет два корня Один отрицательный и не подходит ( -84)Второй = 6 Скорость течения горной реки 6 км/ч
Среднее арифметическое – число, равное сумме всех чисел множества, делённой на их количество.
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.
Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Среднее арифметическое данного ряда чисел – (-16 + 10 + 31 + 4 + 8 - 11 + 2) : 7 = 4
Размах данного ряда чисел – 31 - (-16) = 31 + 16 = 47
Мода данного ряда чисел отсутствует, поскольку ни одно из чисел не повторяется больше одного раза.
Плот плывет по реке 21 км в течение 21:х часовТуристы на лодке все расстояние проплыли за такое же время:
54:(12+х) плыла лодка по реке + 6:12 по озеру и все это равно времени, за которое плот плывет по реке 21 км, =21:х
Составим и решим уравнение:
54:(12+х) +0,5 =21:х
Умножим обе части на х(12+х), чтобы избавиться от дробей:
54х +0,5х(12+х) =21(12+х)
54х +6х +0,5х² =252+21х
0,5х²+39х -252=0
D=b²-4ac=39²-4·0.5·-252=2025
Так как дискриминант больше нуля, то уравнение имеет два корня
Один отрицательный и не подходит ( -84)Второй = 6
Скорость течения горной реки 6 км/ч
Среднее арифметическое – число, равное сумме всех чисел множества, делённой на их количество.
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.
Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Среднее арифметическое данного ряда чисел – (-16 + 10 + 31 + 4 + 8 - 11 + 2) : 7 = 4
Размах данного ряда чисел – 31 - (-16) = 31 + 16 = 47
Мода данного ряда чисел отсутствует, поскольку ни одно из чисел не повторяется больше одного раза.