Доброго времени суток!
столкнулся с данным примером, затрудняюсь высчитать
n это как x
заранее
n0= 1 = 1
n1= 0.4 * n7 + n0 * 1 =
n2= n1 * 0.6 =
n3= n1 * 0.4 + n2*1 + n4*0.4 =
n4= n3 * 1 + n5 * 0.2 + n6 *0.9 =
n5= n4 * 0.6 =
n6= n5 * 0.8 =
n7= n6 * 0.1 =
n8= n7 * 0.6 =
nk= n8 * 1 =
2) -1 целая 1\7*(4\5+19\20)*(6 целых 5\6+4 целых 2\3) = -8/7*(16/20+19/20)*(41/6+14/3) = -8/7*35/20*(41/6+28/6) = -10/5*69/6 = -2*69/6 = -69/3 = -23
3) (6 целых 3\8-2целых 3\4)*(-4)+7\18*9 = (51/8-11/4)*(-4)+7/2 = (51/8-22/8)*(-4)+7/2 = 29/8*(-4)+7/2 = -29/2+7/2 = -22/2 = -11
4) 9 целых 1\6:(4 целых 1\3-8)+24*3\8 = 55/6:(13/3-24/3)+9 = 55/6:(-11/3)+9 = 55/6*(-3/11)+9 = -5/2+9 = 6,5
Таблица точек
x y
-3.0 -18
-2.5 -8.1
-2.0 -2
-1.5 1.1
-1.0 2
-0.5 1.4
0 0
0.5 -1.4
1.0 -2
1.5 -1.1
2.0 2
2.5 8.1
3.0 18
Точка пересечения графика функции с осью координат Y:
График пересекает ось Y, когда x равняется 0: подставляем x=0 в x³-3x.
у =0³-3*0 = 0,
Результат: y=0. Точка: (0; 0.
Точки пересечения графика функции с осью координат X:
График функции пересекает ось X при y=0, значит, нам надо решить уравнение:
x³-3x = 0
Решаем это уравнение и его корни будут точками пересечения с X:
x (х²-3) = 0,
х1 = 0, х2,3 = +-√3.
Результат: y=0. Точки: (0; -√3), (0; 0) и (0; √3).
Экстремумы функции:
Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:
y'=3x² – 3 = 0
Решаем это уравнение и его корни будут экстремумами:
3(х²-1) = 0,
х1 = 1, х2 = -1.
Результат: y’=0. Точки: (-1; 2) и (1; -2). Это критические точки.
Интервалы возрастания и убывания функции:
Найдем значения производной между критическими точками:
x = -2 -1 0 1 2
y' = 9 0 -3 0 9.
• Минимум функции в точке: х = -1,
• Максимум функции в точке: х = 1.
• Возрастает на промежутках: (-∞; -1) U (1; ∞)
• Убывает на промежутке: (-1; 1)
Точки перегибов графика функции:
Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции:
y'' = 6x = 0
Отсюда точка перегиба х = 0
Точка: (0; 0).
Интервалы выпуклости, вогнутости:
Находим знаки второй производной на промежутках (-∞; 1) и (1; +∞).
х = -1 0 1
y'' = -6 0 6.
Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.
• Вогнутая на промежутках: (0; ∞),
• Выпуклая на промежутках: (-∞; 0)
Вертикальные асимптоты – нет.
Горизонтальные асимптоты графика функции:
Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:
• lim x3-3x, x->+∞ = ∞, значит, горизонтальной асимптоты справа не существует
• lim x3-3x, x->-∞ = -∞, значит, горизонтальной асимптоты слева не существует
Наклонные асимптоты графика функции:
Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:
• lim x3-3x/x, x->+oo = oo, значит, наклонной асимптоты справа не существует.
• lim x3-3x/x, x->-oo = oo, значит, наклонной асимптоты слева не существует.
Четность и нечетность функции:
Проверим функцию - четна или нечетна с соотношений f(-x)=f(x) и f(-x)=-f(x). Итак, проверяем:
• (-x3)-3(-x) = -x3+3x нет,
• (-x3)-3(-x) = -(x3-3x) – да, значит, функция является нечётной.