9 x^2 - 25 x^4= 0; 9x^2 ( 1 - 25x^4 / 9) = 0; (3x)^2 * ( 1- 5x/2) (1+ 5x/2) = 0; x1 = 0; Четный корень, так как он повторяется x2 = - 2,5; x3 = 2,5. Теперь методом интервалов определим знаки производной y' + - четн - + - 2,5 02,5x y возр убыв убыв возр. max min Находим знаки производной на этих промежутках , подставляя числа из промежутков в в уравнение производной y'=9 x^2 - 25 x^4; значение х= 3 - это число из самой правой области (0т 2,5 до бескон-ти). Дальше чередуем, не забываем о том, что через точку х=0 проходим, не меняя знак. Таким образом , точка минимума - это точка х = 2,5. Именно в ней производная меняет знак с плюса на минус. У Вас получилось 2 точки минимума, потому что Вы наверняка не учли, что здесь 4 корня, 2 из которых одинаковые (х=0 и х =0). При переходе через корень четной степени( в данном случае второй степени) знак не меняется
1.В
Диагонали ромба не равны, они в точке пересечения делятся по полам.
2.
Зная что сумма внутренних углов четырехугольника 360° составим уровнение:
110+110+х+х=360
220+2х=360
2х=360-220
2х=140°
Х=70°
ответ:В
3.
S=a²
Увеличим в два раза:
S=(2a)²=4a²
ответ:Б, увеличится в 4 раза.
4.
Синус-отношение противолежайщего катета к гипотенузе.
По теореме Пифагора найдём гипотенузу:
5²+12²=25+144=169
√169=13
Синус равен-5/13
ответ:а
5.
Сначала найдём сумму внутренних углов в пятиугольнике:
180(n-2)=180(5-2)=180*3=540
Составим уровнение:
2х+4х+х+3х+8х=540
18х=540
Х=30
8*30=240°
ответ:В
6.
Найдем гипотенузу первого треугольника:
6²+8²=36+64=100
√100=10
Подобный ему треугольник в три раза больше него значит и катет будет в три раза больше:
6*3=18см
ответ:а
7.
Проведем две высоты и по теореме Пифагора найдём его:
10²-8²=100-64=36
√36=6
Найдем площадь трапеции:
S=Lh
L-средняя линия
h-высота
Найдем среднюю линию:
L=(4+20)÷2=24÷2=12
Подставляем:
S=12*6=72
ответ:72см²
8.
15²=9*АС
225=9*АС
АС=25(гипотенуза)
По теореме Пифагора найдём катет:
25²-15²=625-225=400
√400=20
Найдем площадь:
S=1/2*15*20=150
ответ:150см²
y'(x) = - 25 x^4 + 9 x^2 = 9 x^2 - 25 x^4;
9 x^2 - 25 x^4= 0;
9x^2 ( 1 - 25x^4 / 9) = 0;
(3x)^2 * ( 1- 5x/2) (1+ 5x/2) = 0;
x1 = 0; Четный корень, так как он повторяется
x2 = - 2,5;
x3 = 2,5.
Теперь методом интервалов определим знаки производной
y' + - четн - +
- 2,5 02,5x
y возр убыв убыв возр.
max min
Находим знаки производной на этих промежутках , подставляя числа из промежутков в в уравнение производной y'=9 x^2 - 25 x^4;
значение х= 3 - это число из самой правой области (0т 2,5 до бескон-ти). Дальше чередуем, не забываем о том, что через точку х=0 проходим, не меняя знак.
Таким образом , точка минимума - это точка х = 2,5. Именно в ней производная меняет знак с плюса на минус.
У Вас получилось 2 точки минимума, потому что Вы наверняка не учли, что здесь 4 корня, 2 из которых одинаковые (х=0 и х =0). При переходе через корень четной степени( в данном случае второй степени) знак не меняется