Чтобы избавиться от дробного выражения, знаменатель первой дроби в первом уравнении умножим на числитель второй дроби, а знаменатель второй дроби в первом уравнении умножим на числитель первой дроби. Во втором уравнении знаменатель дроби умножим на 5:
(3х-4)(5-3у)=(3у-4)(5-3х)
(у+5)=5(х-3)
Раскроем скобки:
15х-9ху-20+12у=15у-9ху-20+12х
у+5=5х-15
Приведём подобные члены:
15х-9ху-20+12у-15у+9ху+20-12х=0
у+5-5х+15=0
3х-3у=0
у-5х+20=0
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
Решение системы уравнений х=5
у=5
Объяснение:
Решить систему уравнений
(5-3х)/(3х-4)=(5-3у)/(3у-4)
(у+5)/(х-3)=5
Чтобы избавиться от дробного выражения, знаменатель первой дроби в первом уравнении умножим на числитель второй дроби, а знаменатель второй дроби в первом уравнении умножим на числитель первой дроби. Во втором уравнении знаменатель дроби умножим на 5:
(3х-4)(5-3у)=(3у-4)(5-3х)
(у+5)=5(х-3)
Раскроем скобки:
15х-9ху-20+12у=15у-9ху-20+12х
у+5=5х-15
Приведём подобные члены:
15х-9ху-20+12у-15у+9ху+20-12х=0
у+5-5х+15=0
3х-3у=0
у-5х+20=0
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
3х=3у
х=у
у-5у= -20
-4у= -20
у= -20/-4
у=5
х=у
х=5
Решение системы уравнений х=5
у=5
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.