Прежде преобразуем уравнения в более удобный для вычислений вид:
y+12x=2
у=2-12х
3y−12x=4
3у=4+12х
у=(4+12х)/3
Приравняем правые части уравнений (левые равны) и вычислим х:
2-12х=(4+12х)/3
Умножим выражение на 3, чтобы избавиться от дроби:
3(2-12х)=4+12х
6-36х=4+12х
-36х-12х=4-6
-48х= -2
х=1/24
у=(4+12х)/3
у=(4+12*1/24)/3
у=4,5/3
у=1,5
Решение системы уравнений х=1/24
у=1,5
2)Решить систему уравнений алгебраического сложения.
2x+y=1
3x−y=9
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, есть +у и -у.
Складываем уравнения:
2х+3х+у-у=1+9
5х=10
х=2
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
a) (x-2)*(x+2)
б) (5-3a) * (5+3a)
в) - проверь свою запись
г) (3b-9-x) * (3b-1+x)
Объяснение:
а) x^2-4 = (x-2)*(x+2)
б) 25-9а^2 = (5-3a) * (5+3a)
в) 36m^2 -10m^2 = 26m^2 это выражение нельзя разложить на многочлены, его можно только упростить. Проверь, вдруг ты его неправильно списал
г) 0,81y^10 -400z^12 = ( 0.9*y^5 - 20z^6 ) * ( 0.9*y^5 + 20z^6 )
д) (3b-5)^2 -(x+4)^2 это можно представить в виде а^2-b^2=(a-b)*(a+b)
(3b-5 - (x+4)) * (3b-5 + (x+4)) = (3b-5-x-4) * (3b-5+x+4) = (3b-9-x) * (3b-1+x)
1)у=1,5
Решение системы уравнений х=1/24
у=1,5
2)Решение системы уравнений х=2
у= -3
Объяснение:
1)Дана система двух линейных уравнений:
y+12x=2
3y−12x=4
Найди значение переменной y.
Прежде преобразуем уравнения в более удобный для вычислений вид:
y+12x=2
у=2-12х
3y−12x=4
3у=4+12х
у=(4+12х)/3
Приравняем правые части уравнений (левые равны) и вычислим х:
2-12х=(4+12х)/3
Умножим выражение на 3, чтобы избавиться от дроби:
3(2-12х)=4+12х
6-36х=4+12х
-36х-12х=4-6
-48х= -2
х=1/24
у=(4+12х)/3
у=(4+12*1/24)/3
у=4,5/3
у=1,5
Решение системы уравнений х=1/24
у=1,5
2)Решить систему уравнений алгебраического сложения.
2x+y=1
3x−y=9
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, есть +у и -у.
Складываем уравнения:
2х+3х+у-у=1+9
5х=10
х=2
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2x+y=1
у=1-2х
у=1-2*2
у= -3
Решение системы уравнений х=2
у= -3