В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
tsvakhvesna
tsvakhvesna
09.09.2021 15:22 •  Алгебра

Доказать что 5^31 - 5^30 делится 10^2

Показать ответ
Ответ:
ася704
ася704
05.10.2020 12:51
5^{31}- 5^{30} = 5^{30}*( 5^{31-30}- 5^{30-30} )= 5^{30}*(5-1) = 5^{30}*4=
= 5^{28}* 5^{2} * 2^{2} = 5^{28}*(5*2) ^{2} = 5^{28}* 10^{2}

произведение двух или нескольких множителей делится на число n без остатка, если на это число делится хотя бы один множитель

5^{28}* 10^{2} : 10^{2}= 5^{28}

ответ: выражение 5^{31}- 5^{30} делится на 10²
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота