В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
BeautifulGirl001
BeautifulGirl001
02.02.2020 14:32 •  Алгебра

Доказать, что число 11n^3+n делится на 6 при любом n€n.

Показать ответ
Ответ:
yanalatina97
yanalatina97
03.10.2020 20:50
1) Проверим для n=1:
11*1+1=12, на 6 делится.
2) Предположим, что при n=k предположение верно, т.е. 11k³+k делится на 6.
Докажем, что оно будет верно и при n=k+1:
11(k+1)³+(k+1) = 11k³+33k²+34k+12 = (11k³+k) + 3(11k²+11k+4)
11k³+k делится на 6 по предположению;
11k²+11k+4: при чётном k (k=2m) 44m²+22m+4 делится на 2
при нечётном k (k=2m+1) 44m²+66m+26 делится на 2
Значит 3*(11k²+11k+4) делится на 6, отсюда (11k³+k) + 3(11k²+11k+4) делится на 6, значит, предположение верно, и 11n³+n делится на 6 при любых n∈N
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота