В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
КаМиЛлА2911
КаМиЛлА2911
24.06.2020 19:55 •  Алгебра

Доказать,что cos2п/7+cos4п/7+cos6п/7=-1/2

Показать ответ
Ответ:
арина1494
арина1494
13.06.2020 12:35
ответ: −½

A ≡ cos(2π/7) + cos(4π/7) + cos(6π/7) = ?

Рассмотрим расширенную сумму 
B ≡ 1 + cos(2π/7) + cos(4π/7) + cos(6π/7) + cos(8π/7) + cos(10π/7) + cos(12π/7)
С учётом тождества cos(2π−φ) = cos(φ) получаем:
cos(8π/7) = cos(6π/7),
cos(10π/7) = cos(4π/7),
cos(12π/7) = cos(2π/7).

Таким образом, B = 2A + 1

Запишем B с использованием тригонометрической записи комплексных чисел:
B = Re (1 + z + z² + z³ + z^4 + z^5 + z^6),
где z = e^(2iπ/7), Re(z) — действительная часть z.
В скобках стоит сумма геометрической прогрессии:
B = Re ((1−z^7)/(1−z))
Но z^7 = e^(2iπ) = 1; таким образом, 1−z^7 = 0, и
B = 0

Итак, 2A + 1 = 0 ⇒ A=−½
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота