В общем виде это знаменитое неравенство Коши о том что среднее геометрическое не превосходит среднего арифментического для положительных чисел и равняется при равенстве чисел (a₁+a₂+a₃++aₓ)/x ≥ ˣ√ (a₁a₂a₃aₓ) a₁ aₓ ≥0 докажем сначала для 2-х (a₁+a₂)/2 ≥ √a₁a₂ a₁+a₂≥ 2√a₁a₂ a₁+a₂ - 2√a₁a₂ ≥ 0 (√a₁ - √a₂) ≥ 0 квадрат всегда больше равен 0 докажем на основании этой теоремы что (a₁+a₂+a₃+a₄)/4 ≥ ⁴√a₁a₂a₃a₄ теперь рассмотрим некие преобразования [ (a₁+a₂)/2 + (a₃+a₄)/2 ] / 2 ≥ √ ((a₁+a₂)/2) * ((a₃+a₄)/2) (a₁+a₂+a₃+a₄)/4 ≥ √ ((√a₁a₂)* (√a₃a₄) = √√(a₁a₂a₃a₄)=⁴√(a₁a₂a₃a₄) чтд
можно доказать в общем для n переменных по методу математической индукции вышеуказанный метод модно применять для степеней 2 для 2 4 8 16 итд членов
(a₁+a₂+a₃++aₓ)/x ≥ ˣ√ (a₁a₂a₃aₓ)
a₁ aₓ ≥0
докажем сначала для 2-х
(a₁+a₂)/2 ≥ √a₁a₂
a₁+a₂≥ 2√a₁a₂
a₁+a₂ - 2√a₁a₂ ≥ 0
(√a₁ - √a₂) ≥ 0 квадрат всегда больше равен 0
докажем на основании этой теоремы что
(a₁+a₂+a₃+a₄)/4 ≥ ⁴√a₁a₂a₃a₄
теперь рассмотрим некие преобразования
[ (a₁+a₂)/2 + (a₃+a₄)/2 ] / 2 ≥ √ ((a₁+a₂)/2) * ((a₃+a₄)/2)
(a₁+a₂+a₃+a₄)/4 ≥ √ ((√a₁a₂)* (√a₃a₄) = √√(a₁a₂a₃a₄)=⁴√(a₁a₂a₃a₄) чтд
можно доказать в общем для n переменных по методу математической индукции
вышеуказанный метод модно применять для степеней 2 для 2 4 8 16 итд членов