В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
catarshaninp08iio
catarshaninp08iio
26.03.2020 01:22 •  Алгебра

Доказать, что f(x) = х/2 - 3/х является первообразной для f(х) = 1/2 + 3/x^2 на промежутке (минус бесконечность; 0)

Показать ответ
Ответ:
lera5053
lera5053
24.05.2020 15:31

Нужно доказать, что ∫f(x)dx + C = F(x)

Возьмём интеграл:

∫f(x)dx + C = ∫( 1/2 + 3/x^2)dx + C = х/2 + 3·(-1)·х⁻¹ + С = х/2 - 3/х + С

Действительно, F(x) = х/2 - 3/х является одной из первообразных, но не только на интервале х∈(-∞; 0), но и на интервале (0; +∞)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота