В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lisa2051
lisa2051
24.01.2021 16:04 •  Алгебра

Доказать, что корень из трех не является рациональным числом

Показать ответ
Ответ:
karinakarina9
karinakarina9
21.06.2020 20:29
Доказывается элементарно предположением от обратного.
Допустим, корень из трех - рациональное число. Тогда его можно представить в виде несократимой дроби m/n, где m и n - целые числа. Возведем в квадрат:

3=m^2/n^2, откуда m^2=3*n^2
Отсюда следует, что m^2 делится на 3, но тогда и m делится на 3, т.е. m^2 делится на 9.
Но тогда и n^2 будет делиться на 3 (одна тройка стоит в качестве коэффициента), тогда и n будет делиться на 3. Получили, что m делится на 3 и n делится на три, что противоречит несократимости дроби m/n. Следовательно, корень из трех - иррациональное число.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота