В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vhbhvgh
vhbhvgh
19.03.2023 13:16 •  Алгебра

Доказать, что при любом натуральном n число 10-(4^n)+3n делится на 9.

Показать ответ
Ответ:
lili247
lili247
08.10.2020 08:08

Докажем методом математической индукции.

1) База индукции: n=1

10-4^1+3\cdot 1=10-4+3=9~~ \vdots ~~9

2) Предположим, что и для n=k выражение (10-4^k+3k)~\vdots~9

3) Индукционный переход: n=k+1

10-4^{k+1}+3(k+1)=10-4\cdot 4^k+3k+3=40-4\cdot 4^k+12k -9k-27=\\ \\ \\ =4\cdot (\underbrace{10-4^k+3k}_{div~9})-9\cdot (k+3)

Первое слагаемое делится на 9 по второму пункту и второе слагаемое делится на 9, так как имеет сомножитель 9.

То есть, (10-4^n+3n)~\vdots~9 при n \in \mathbb{N}


Доказать, что при любом натуральном n число 10-(4^n)+3n делится на 9.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота