В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bogussasa7
bogussasa7
06.02.2020 06:36 •  Алгебра

Доказать, что при любом натуральном n число an =n^3+5n делится на 6.

Показать ответ
Ответ:
TheAgentSquid
TheAgentSquid
24.06.2020 14:25
 Методом мат индукция при n=1 верно   ,то  при  k=n+1 
 (n+1)^3+5(n+1) = n^3 + 3n^2 +8n+6 \\
n^3+5n+3n^2+3n+6\\
n^3+5n=A_{n}\\
A_{n} +3n^2+3n+6 = A_{n}+6n^2-3n^2+6n-3n+6 =\\A_{n}+6n(n+1)-(3n^2+3n)+6\\
A_{n}+6n(n+1)-3n(n+1)+6\\
A_{n}+(6n-3n)(n+1)+6\\
A_{n}+3n(n+1)+6

То есть n(n+1)  это два последовательных чисел, и хот бя одно из них содержит
 число 2 ,   а так как оно еще умножается на  3 , то оно делиться на 6 
то есть все выражение делится  на 6 , так как A(n) уже делится , 6 тоже и искомое выражение     тоже делится на  6 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота