Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Города А, B и C расположены вдоль прямой дороги, причем город B между городами А и C. Какова скорость грузового автомобиля, если расстояние между городами А и C составляет 200 км, AB : BC = 2 : 3, расстояние от города B до города C он преодолевает за 2 часа?
Формула движения: S=v*t
S - расстояние v - скорость t – время
Сначала определимся с расстояниями.
Расстояние от А до С составляет 200 км и 5 частей по условию.
Найти расстояние ВС:
200:5*3=120 (км).
Это расстояние грузовик проходит по условию задачи за 2 часа.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Скорость грузовика 60 км/час.
Объяснение:
Города А, B и C расположены вдоль прямой дороги, причем город B между городами А и C. Какова скорость грузового автомобиля, если расстояние между городами А и C составляет 200 км, AB : BC = 2 : 3, расстояние от города B до города C он преодолевает за 2 часа?
Формула движения: S=v*t
S - расстояние v - скорость t – время
Сначала определимся с расстояниями.
Расстояние от А до С составляет 200 км и 5 частей по условию.
Найти расстояние ВС:
200:5*3=120 (км).
Это расстояние грузовик проходит по условию задачи за 2 часа.
v=S:t,
скорость грузовика: 120 : 2 = 60 (км/час).