Если шифр пятизначный, то зафиксировав на втором месте цифру 5, а на последнем - цифру 0, получаем общее количество кодов для составления шифра замка: 5*1*5*5*1= 125 (Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)
Объяснение:
Sin² (x) - 7 sin (x) cos (x)+2(Sin² (x)+cos (x))=0
Sin² (x) - 7 sin (x) cos (x)+2Sin² (x)+2cos² (x)=0 / cos² (x)
tg² X-7tg X +2tg²X+2=0
3tg² X-7tg X +2=0 tg² X=к
3к² -7к +2=0
к=(7±√(49-4*3*2))/(2*3)
к=(7±√(49-24))/6
к=(7±5)/6
к₁=2/6=1/3 tg² X=1/3 tg X =±√3/3
к₂=12/6=2 tg² X=2 tg X=±√2
tg X₁ =-√3/3 X₁ =arctg(-√3/3) X₁ = 5п/6 +пк
tg X₂ =+√3/3 X₂ =arctg(+√3/3) X₂ =п/6 +пк
tg X₃ =-√2 X ₃=arctg(-√2) Х₃≈ 0.6959п+пк
tg X ₄=+√2 X ₄=arctg(+√2) Х₄≈0,304п+пк
(Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)