В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
eegorov1996
eegorov1996
26.11.2020 06:23 •  Алгебра

Доказать неравенство a2 + b2 – 16a + 14b + 114 > 0

Показать ответ
Ответ:
violettakot01
violettakot01
16.08.2020 09:23
A² + b² - 16a + 14b + 114 > 0
a² - 16a + b² + 14b + 114 > 0
Выделим полные квадраты
a² - 16a + 64 - 64 + b² + 14b + 49 - 49 + 114 > 0
(a - 8)² + (b + 7)² - 113 + 114 > 0
(a - 8)² + (b + 7)² > -1
Сумма двух квадратов будет принимать неотрицательные значения, значит, неравенство верно при любых a и b.
0,0(0 оценок)
Ответ:
Dadahkkkaaa001
Dadahkkkaaa001
16.08.2020 09:23
a2 + b2 – 16a + 14b + 114 > 0
(a²-16a+64)-64+(b²+14b+49)-49+114>0
(a-8)²+(b+7)²+1>0
(a-8)≥0 ,(b+7)≥0,1>0⇒(a-8)²+(b+7)²+1>0 при любом a и b
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота