В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ОЛДВЖ
ОЛДВЖ
12.01.2020 08:16 •  Алгебра

Доказать неравентсво: (b+c+d)/a + (a+c+d)/b + (a+b+d)/c + (a+b+c)/d > = 12 при a> 0 b> 0 c> 0 d> 0

Показать ответ
Ответ:
Lkiozra
Lkiozra
02.07.2020 16:15
Возьмём все эти числа равными 1
Тогда получаем:
(1+1+1)/1 + (1+1+1)/1 + (1+1+1)/1 + (1+1+1)/1  >= 12
3/1+3/1+3/1+3/1=3+3+3+3=12
Это минимальное значение, если возьмёшь хотя бы одно из чисел больше, то и результат увеличится. 
Поэтому неравенство доказано
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота