Обозначаем нули на ОДЗ и находим знак функции f (x) в каждом промежутке, на которые разбиваем ОДЗ (Для того чтобы найти знак мы берем любое число, которое принадлежит данном промежутке, например на промежутке (-2; 2) можно взять число 0, и подставляем его в неравенство вместо х и тогда высчитываем, если получается отрицательное число, то ставим знак минус, а если положительное, то плюс) __-____-3___+__-2___-___2____+___3__-___4__+_>x
Так как по условию нужно найти числа, которые больше нуля, то промежутки имеющих знак плюс и являются ответом для неравенства.
Находим нули функции:
Обозначаем нули на ОДЗ и находим знак функции f (x) в каждом промежутке, на которые разбиваем ОДЗ
(Для того чтобы найти знак мы берем любое число, которое принадлежит данном промежутке, например на промежутке (-2; 2) можно взять число 0, и подставляем его в неравенство вместо х и тогда высчитываем, если получается отрицательное число, то ставим знак минус, а если положительное, то плюс)
__-____-3___+__-2___-___2____+___3__-___4__+_>x
Так как по условию нужно найти числа, которые больше нуля, то промежутки имеющих знак плюс и являются ответом для неравенства.
x∈(-3;-2)∨(2;3)∨(4; +∞)
АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.