а) прямая проходит через начало координат, т. е. через точку О (0;0), а также через точку А (0,6;-2,4). это значит что у=0 при х=0 и у=-2,4 при х=0,6. графиком функции является прямая. уравнение прямой - у=к*х осталось найти коэффициент к. -2,4 = (-4)*0.6 отсюда у=-4х б) прямая пересекает оси координат в точках В (0;4) и С (-2,5;0). получаем систему уравнений 4=0*к+а и 0=(-2.5)*к+а. из первого уравнения а=4 подставляем значение а во второе уравнение и рассчитываем к. в итоге получаем к=1,6. у=1.6х+4
а) прямая проходит через начало координат, т. е. через точку О (0;0), а также через точку А (0,6;-2,4). это значит что у=0 при х=0 и у=-2,4 при х=0,6. графиком функции является прямая. уравнение прямой - у=к*х осталось найти коэффициент к. -2,4 = (-4)*0.6 отсюда у=-4х б) прямая пересекает оси координат в точках В (0;4) и С (-2,5;0). получаем систему уравнений 4=0*к+а и 0=(-2.5)*к+а. из первого уравнения а=4 подставляем значение а во второе уравнение и рассчитываем к. в итоге получаем к=1,6. у=1.6х+4
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.