В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Daswert
Daswert
30.08.2021 04:20 •  Алгебра

Докажи, что значение выражения (a+y−2z)(y−a)−(y+z−2a)⋅(y−z)+(z+a−2y)(a−z)+14 не меняется при любых значениях переменных. значение выражения равно:

Показать ответ
Ответ:
василий0086
василий0086
23.05.2020 11:09

а) 14 - (2 + 3х - х²) = х² + 4х - 9

14-2-3x+x²=x²+4x-9

14-2-3x=4x-9

12-3x=4x-9

12-3x-4x+9=0

21-7x=0

21=7x

x=21:7

x=3

6а²-(9а²-5аb)+(3a²-2ab)  

а=-0,15,b=6

Думаю, что будет легче, если мы приведем подобные:

6а²-9а²+5аb+3a²-2ab (перед знаком минус - знаки в скобке меняем на противоположные, а при плюсе оставляем все, как есть)

Теперь выделяем подобные, имеющие одинаковые переменные и их степени(так будет удобней):

6а²-9а²+5аb+3a²-2ab

__ ___     __

И вычисляем:

6а²-9а²+3a²=0, поэтому мы не пишем числа, связанные с переменной а²

5аb-2аb=3аb

3аb

а и b числа:

-3               *0.15*6= -18*0.15=-2.7

ответ: -2.7

Объяснение:

0,0(0 оценок)
Ответ:
iukhg
iukhg
23.05.2020 11:09

ответ: (0; -6)

Объяснение:

1)Найдём абсциссы точек  пересечения графика с осью абсцисс:

x⁴+x²-2=0  

пусть х²=у≥0  ⇒ у²+у-2=0

D=1+8=9>0

y₁= (-1+3)/2=1

y₂=(-1-3)/2=-2<0 (не удовл условию  у≥0)

Если у=1, то х²=1  ⇒ х₁=1, х₂=-1 (абсциссы точек  пересечения графика с осью абсцисс)

2)Найдём уравнение касательной  к кривой y=x⁴+x²-2 в точке  с абсциссой x₀₁ = 1.

Запишем уравнения касательной в общем виде:

y = y₀ + y'(x₀)(x - x₀)

По условию задачи x₀₁= 1, тогда y₀ = 1⁴+1²-2=0

Теперь найдем производную:

y' = (x⁴+x²-2)' = 4х³+2x

следовательно:  y'(x₀)=у'(1) = 4·1³+2·1 = 6

Тогда уравнение касательной в точке с абсциссой х₀₁=1:

y=0+6·(x-1)=6х-6    или   y = 6·x-6  (уравнение первой касательной)

3) Найдём уравнение касательной  к кривой y=x⁴+x²-2 в точке  с абсциссой x₀₂ = -1.

По условию задачи x₀₂= - 1, тогда y₀=y₀₂ = 1⁴+1²-2=0

y'  = 4х³+2x

следовательно:  y'(x₀₂)=у'(-1) = 4·(-1)³+2·(-1) =  -6

Тогда уравнение касательной в точке с абсциссой х₀₂=-1:

y=0-6·(x+1)=-6х-6    или   y = -6·x-6  (уравнение второй касательной)

4)Найдём точку пересечения этих касательных:

6х-6= -6х-6

12х=0

х=0 ⇒ у=6·0-6= -6  ⇒ (0; -6) точка пересечения этих касательных

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота