В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
drakonchik5005
drakonchik5005
19.04.2020 05:42 •  Алгебра

Докажите что 6^n+20n-1 делится на 25 для любого натурального n

Показать ответ
Ответ:
Говницооо
Говницооо
10.07.2020 21:15
Воспользуемся методом индукции:
1) При n=1: 6+20-1=25 - делится.
2) Пусть при n=k - делится.
3) Надо доказать, что при n=k+1 тоже делится. Подставляем вместо n k+1:

6^(k+1) + 20(k+1) -1 =
6*6^k + 20k + 20 - 1 = (вычетом и прибавим 6^k)
6*6^k + 20k + 20 - 1+ 6^k - 6^k = (сгруппируем слагаемые следующим образом)
(6^k + 20k - 1) + ( 6*6^k + 20 - 6^k).

(6^k + 20k - 1) - делится на 25 по второму пункту. Осталось доказать, что ( 6*6^k + 20 - 6^k) тоже делится на 25.

6*6^k + 20 - 6^k = 6^k * (6 - 1) + 20 = 5 * 6^k + 20 = 5 * (6^k+4). Т. к. (6^k+4) делится на 5 для любого натурального k, то утверждение доказано.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота