В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Khmelnitskaya
Khmelnitskaya
23.05.2022 09:17 •  Алгебра

Докажите, что 7*(5^(2n-1))+(2^(3n+1)) делится на 17 при любом натуральном значение n. (доказательство методом индукции)

Показать ответ
Ответ:
рай34
рай34
19.06.2020 16:56
7*5^{n-1}+2^{3n+1}\\
pri \ n=1\ verno!\\
k=n+1\\
pust'\ 7*5^{n-1}+2^{3n+1}=X\\

7*5^{2n+1}+2^{3n+4}=7*5^{2n-1}*25+2^{3n+1}*8=\\
7*5^{2n-1}*(17+8)+2^{3n+1}*8=8X+17*7*5^{2n-1}
то есть каждое слагаемое делиться на 17 , так как сказано что Х то есть выражение  в начале делиться на 17, во втором слагаемом есть 17 то есть делиться на 17
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота