В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nekit120
nekit120
04.08.2020 08:23 •  Алгебра

Докажите что 7*5^2n+12*6^n делится на 19 при любом натуральном n

Показать ответ
Ответ:
никита3227
никита3227
10.07.2020 14:50
Проверяем выполнение условия при n=1
1)7\cdot 5 ^{2}+12\cdot 6=247, \\ 247:19=13
         выполняется
Предполагаем, что условие выполняется для n =k, т .е что
2)7\cdot 5 ^{2k}+12\cdot 6 ^{k}=A  кратно 19
Докажем опираясь на это предположение, что и для следующего n=k+1  условие выполняется
3)7\cdot 5 ^{2k+2}+12\cdot 6 ^{k+1} кратно 19
Доказательство. Берем  выражение в п. 3) и пытаемся выделить в нем выражение п.2) A:
7\cdot 5 ^{2k+2}+12\cdot 6 ^{k+1}=7\cdot 5 ^{2k}\cdot 5 ^{2} +12\cdot 6 ^{k}\cdot 6= \\=7\cdot 5 ^{2k}\cdot 5 ^{2} +12\cdot 5 ^{2}\cdot 6 ^{k}- 12\cdot 5 ^{2}\cdot 6 ^{k}+12\cdot 6 ^{k}\cdot 6 = \\ =5 ^{2} (7\cdot 5 ^{2k} +12\cdot 6 ^{k})- 12\cdot 6 ^{k}(5 ^{2} -6)=25\cdot A - 12\cdot 6 ^{k}\cdot 19
A кратно 19, уменьшаемое кратно, вычитаемое кратно 19, значит и вся разность кратна 19
На основании принципа математической индукции условие верно для любого натурального n
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота