В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
VasyaPupkin001
VasyaPupkin001
01.12.2022 14:37 •  Алгебра

Докажите, что:
ab(a-b)≤a^3-b^3 если а≥b

Показать ответ
Ответ:
помогите1183
помогите1183
07.10.2020 19:53

Объяснение:

Допустим, что a<0 и b<0. Распишем сумму кубов: a^3+b^3=(a+b)(a^2-ab+b^2). Тогда ab(a+b)≤(a+b)(a^2-ab+b^2). При a и b<0, (a+b)-отрицательное, а а^2-ab+b^2≥ab, поскольку (a-b)^2≥0 при любых. a и b. Тогда сокращением на (a+b) меняется знак неравенства.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота