Найдём эктсремум функции(крайние точки) -х2+6х-4| ;(-1) x2-6x+4=0 d=6*6-4*4=36-16=20 х1=(6+ корень из 20)/2=(6+2* корень из 5)/2=3+ корень из 5 х2=(6-корень из 20 )/2=3- корень из 5 х2-6х+4=(х-(3- корень из 5))(х- (3 +корень из 5)) ответ :3+ корень из 5 если не понял можно решить вот так С производной: y ' = -2x + 6 = 0, x = 3, y(3) = -9 + 18 - 4 = 5 Без производной: Так как коэффициент при x^2 отрицателен, то ее ветви направлены вниз. Точка максимума находится в вершине параболы. Вершина параболы имеет координаты: x = -b / 2a = -6 / (2*(-1)) = (-6) / (-2) = 3, y(3) = -9 + 18 - 4 = 5
Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше