График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
Объяснение:
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-ра
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
Объяснение:
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12зница в ско
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
Объяснение:
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
Объяснение:
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
Объяснение:
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в ск12рости/ч)-разница в скорости
График расположен выше оси ОХ.
Точки пересечения с осью ОХ: .
Графики функций - это параболы , ветви
которых направлены вниз, а вершины в точках (0, а).
При х=0 sin0=0 и точка (0,0) является точкой пересечения
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0 точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ: а=0.