В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ivonin07
ivonin07
23.08.2022 00:29 •  Алгебра

Докажите, что данное число является составным:


Докажите, что данное число является составным:

Показать ответ
Ответ:
vitaly1552
vitaly1552
23.12.2020 14:23

Объяснение:

Для того чтобы показать, что число является составным достаточно показать, что оно у него есть делители помимо 1 и самого себя. Для начала надо понять на какое число заканчивается 2^{1234}. Для этого нужно понять на какую цифру заканчиваются степени двойки:

2^1 \rightarrow 2\\2^2 \rightarrow 4\\2^3 \rightarrow8\\2^4 \rightarrow 6\\2^5 \rightarrow 2

Таким образом последняя цифра в степенях двойки может быть только из множества {2, 4, 8, 6}, которое будет циклически повторяться. Дальше надо понять остаток от деления 1234 на 4. 1234 : 4 = 308 и остаток 2. Значит последния цифра у нас совершит 308 полных циклов и еще 2 шага. Таким образом число 2^{1234} заканчивается на цифру 4. Следовательно 2^{1234} + 1 заканчивается на цифру 5, а значит это число делится на 5 и как факт является составным.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота