(x+1)(x^2-x+1)-x(x+3)(x-3) Упростим данное выражение, для этого раскроем скобки. Также заметим, что (x+1)(x^2-x+1) - это формула сокращенного умножения: a³+b³=(a+b)(a²-ab+b²) , где, в нашем случае, a - это x, а b - это x, таким образом, (x+1)(x^2-x+1)=x³+1.
Заметим, (x+3)(x-3) - тоже формула сокращенного умножения - разность квадратов
Обозначим всю работу за 1 Пусть первая выполняет за час х , вторая выполняет за час у. Вместе они за час выполняют (х+у). За четыре часа 4·(х+у) Что и равно все работе,т. е 1 4(х+у)=1 Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов.
Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов. Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
(x+1)(x^2-x+1)-x(x+3)(x-3) Упростим данное выражение, для этого раскроем скобки. Также заметим, что (x+1)(x^2-x+1) - это формула сокращенного умножения: a³+b³=(a+b)(a²-ab+b²) , где, в нашем случае, a - это x, а b - это x, таким образом, (x+1)(x^2-x+1)=x³+1.
Заметим, (x+3)(x-3) - тоже формула сокращенного умножения - разность квадратов
(x+3)(x-3)=x²-9/ Преобразуем наше выражение, дораскрываем скобки:
(x+1)(x^2-x+1)-x(x+3)(x-3)=x³+1-x(x²-9)=x³+1-x³+9x=9x+1.
Найдем значение выражение при x=1:
9*1+1=10.
Удачи!
Пусть первая выполняет за час х , вторая выполняет за час у.
Вместе они за час выполняют (х+у).
За четыре часа 4·(х+у) Что и равно все работе,т. е 1
4(х+у)=1
Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов.
Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов.
Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов