В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Rin1111
Rin1111
13.11.2020 23:56 •  Алгебра

Докажите ,что дробь \frac{2021 \times (6 {}^{n } + 20n + 24) }{25 }
при любом натуральном "n" есть целое число ​

Показать ответ
Ответ:
angelikasolnce
angelikasolnce
16.01.2021 22:24

Достаточно показать, что выражение в числителе 6ⁿ + 20n + 24 при любом натуральном n кратно 25. Тогда дробь есть целое число. Докажем индукцией по n. При n = 1 выражение 6ⁿ + 20n + 24 = 50 = 2*25. Пусть это выражение кратно 25 при произвольном n. Покажем, что тогда и выражение 6ⁿ⁺¹ + 20(n + 1) + 24 кратно 25. 6ⁿ⁺¹ + 20(n + 1) + 24 = 6*6ⁿ + 20n +20 + 24 = 6ⁿ + 20n + 24 + 5*6ⁿ + 20 = 6ⁿ + 20n + 24 + 5(6ⁿ + 4). Число 6ⁿ + 4 оканчивается нулём, поэтому кратно 5, значит выражение 5(6ⁿ + 4) = 25k кратно 25. Член суммы 6ⁿ + 20n + 24 кратен 25 по предположению индукции, значит всё выражение 6ⁿ⁺¹ + 20(n + 1) + 24 кратно 25, отсюда следует кратность 25 выражения 6ⁿ + 20n + 24, а значит дробь 2021*(6ⁿ + 20n + 24)/25 есть целое число.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота