Воспользуемся теоремой Виета, которая гласит, что в квадратном уравнении вида х^2 + bх + с = 0 действует следующее правило: х1+х2=-b (в данном случае b1=-7) х1*х2=с (в данном случае с1=-1) Решение: новое уравнение будет выглядеть так: х^2 + (b2)*х + с2 = 0 найдём b2 и с2: По теореме Виета: Во-первых: 5*х1 + 5*х2 = -b2 = = 5*(х1+х2) = -5*b1 = -5*(-7) = 35 = -b2 следовательно b2= -35 во-вторых: (5*х1)*(5*х2)=с2 25*(х1*х2) = с2 25*с1 = с2 = 25*(-1) = -25 Подставляем в новое уравнение найденные b2 и с2: ответ: х^2-35х-25=0
Докажем, сначала, что куб числа - монотонная функция. Монотонная функция -функций, у которой одному значению переменной соответствует только одно значение функции. Пойдем методом от противного пусть в точках х и х+с функция принимает одно и то же значение, тогда: x^3=(x+c)^3 x^3=x^3+3x^2c+3xc^2+c^3 3c *x^2+ 3c^2 *x +c^3=0|:c не равное 0 3x^2+3cx+c^2=0 D=9c^2-4*3c^2=-3c^2<0 Значит не существует такого с, что функция в при нескольких икс принимает одно и то же значение, а значит она монотонна. Если функция монотонна, то достаточно доказать, что если функция f(х+1) больше функции f(x) -то функция явл возрастающей. Пусть: (x+1)^3>x^3 x^3+3x^2+3x+1>x^3 3x^2+3x+1>0 D=9-12=-3<0 Значит уравнение корней не имеет, у параболы ветви вверх, значит она всюду больше 0 Отсюда следует, что: (x+1)^3>x^3 f(x+1)>f(x) Значит функция является монотонно возрастающей.
точно не знаю, но 4 вроде так
Воспользуемся теоремой Виета, которая гласит, что в квадратном уравнении вида х^2 + bх + с = 0 действует следующее правило: х1+х2=-b (в данном случае b1=-7) х1*х2=с (в данном случае с1=-1) Решение: новое уравнение будет выглядеть так: х^2 + (b2)*х + с2 = 0 найдём b2 и с2: По теореме Виета: Во-первых: 5*х1 + 5*х2 = -b2 = = 5*(х1+х2) = -5*b1 = -5*(-7) = 35 = -b2 следовательно b2= -35 во-вторых: (5*х1)*(5*х2)=с2 25*(х1*х2) = с2 25*с1 = с2 = 25*(-1) = -25 Подставляем в новое уравнение найденные b2 и с2: ответ: х^2-35х-25=0
Монотонная функция -функций, у которой одному значению переменной соответствует только одно значение функции.
Пойдем методом от противного
пусть в точках х и х+с функция принимает одно и то же значение, тогда:
x^3=(x+c)^3
x^3=x^3+3x^2c+3xc^2+c^3
3c *x^2+ 3c^2 *x +c^3=0|:c не равное 0
3x^2+3cx+c^2=0
D=9c^2-4*3c^2=-3c^2<0
Значит не существует такого с, что функция в при нескольких икс принимает одно и то же значение, а значит она монотонна.
Если функция монотонна, то достаточно доказать, что если функция f(х+1) больше функции f(x) -то функция явл возрастающей.
Пусть:
(x+1)^3>x^3
x^3+3x^2+3x+1>x^3
3x^2+3x+1>0
D=9-12=-3<0
Значит уравнение корней не имеет, у параболы ветви вверх, значит она всюду больше 0
Отсюда следует, что:
(x+1)^3>x^3
f(x+1)>f(x)
Значит функция является монотонно возрастающей.