1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)
36 - составное число
24 - составное число
Разложим число 36 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
36 : 2 = 18 - делится на простое число 2
18 : 2 = 9 - делится на простое число 2
9 : 3 = 3 - делится на простое число 3.
Завершаем деление, так как 3 простое число
Разложим число 24 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
24 : 2 = 12 - делится на простое число 2
12 : 2 = 6 - делится на простое число 2
6 : 2 = 3 - делится на простое число 2.
Завершаем деление, так как 3 простое число
2) Выделим синим цветом и выпишем общие множители
36 = 2 ⋅ 2 ⋅ 3 ⋅ 3
24 = 2 ⋅ 2 ⋅ 2 ⋅ 3
Общие множители (36 ; 24) : 2, 2, 3
3) Теперь, чтобы найти НОД нужно перемножить общие множители
ответ: НОД (36 ; 24) = 2 ∙ 2 ∙ 3 = 12
№2
1) Найдем все возможные делители чисел (36 ; 24). Для этого поочередно разделим число 36 на делители от 1 до 36, число 24 на делители от 1 до 24. Если число делится без остатка, то делитель запишем в список делителей.
Для числа 36 выпишем все случаи, когда оно делится без остатка:
Объяснение:
1 . 5) ( x + 1 )/(x²- xy ) i ( y - 1 )/(xy - y²) ;
y*(x + 1 )/xy(x - y ) i x*(y - 1)/xy(x - y ) ;
6) 6a/(a - 2b) i 3a/( a + b ) ;
6a( a + b )/(a + b)(a - 2b ) i 3a(a - 2b)/(a + b)(a - 2b ) ;
7) ( 1 + c²)/( c² - 16 ) i c/( 4 - c ) ;
( 1 + c²)/( c² - 16 ) i - c(c + 4 )/( c² - 16 ) ;
8) ( 2m + 9 )/(m² + 5m + 25 ) i m/(m - 5 ) ;
(2m + 9 )(m - 5)/(m - 5)(m²+5m +25 ) i m( m²+5m +25 )/(m - 5)(m²+5m +25 ).
1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)
36 - составное число
24 - составное число
Разложим число 36 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
36 : 2 = 18 - делится на простое число 2
18 : 2 = 9 - делится на простое число 2
9 : 3 = 3 - делится на простое число 3.
Завершаем деление, так как 3 простое число
Разложим число 24 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
24 : 2 = 12 - делится на простое число 2
12 : 2 = 6 - делится на простое число 2
6 : 2 = 3 - делится на простое число 2.
Завершаем деление, так как 3 простое число
2) Выделим синим цветом и выпишем общие множители
36 = 2 ⋅ 2 ⋅ 3 ⋅ 3
24 = 2 ⋅ 2 ⋅ 2 ⋅ 3
Общие множители (36 ; 24) : 2, 2, 3
3) Теперь, чтобы найти НОД нужно перемножить общие множители
ответ: НОД (36 ; 24) = 2 ∙ 2 ∙ 3 = 12
№2
1) Найдем все возможные делители чисел (36 ; 24). Для этого поочередно разделим число 36 на делители от 1 до 36, число 24 на делители от 1 до 24. Если число делится без остатка, то делитель запишем в список делителей.
Для числа 36 выпишем все случаи, когда оно делится без остатка:
36 : 1 = 36;36 : 2 = 18;36 : 3 = 12;36 : 4 = 9;36 : 6 = 6;36 : 9 = 4;36 : 12 = 3;36 : 18 = 2;36 : 36 = 1;
Для числа 24 выпишем все случаи, когда оно делится без остатка:
24 : 1 = 24;24 : 2 = 12;24 : 3 = 8;24 : 4 = 6;24 : 6 = 4;24 : 8 = 3;24 : 12 = 2;24 : 24 = 1;
2) Выпишем все общие делители чисел (36 ; 24) и выделим зеленым цветом самы большой, это и будет наибольший общий делитель НОД чисел (36 ; 24)
Общие делители чисел (36 ; 24): 1, 2, 3, 4, 6, 12
ответ: НОД (36 ; 24) = 12