1. 8х+у=8 (12х+у=4)·(-1) это нужно для того, чтобы убрать одну переменную. Получается: 8х+у=8 -12х-у=-4 2. Теперь складываем верхние и нижние "х ", потом "у" и потом числа: ⇒8х+(-12х), у+(-у), 8+(-4) Получилось: -4х=4 (далее решаем уравнение) х=-1 3. Следующим действием восстанавливаем запись системы: Вначале пишем х=-1, а за второе уравнение принимаем любое понравившееся: 8х+у=8 или 12х+у=4 Я выбрала 1-ое: х=-1 8х+у=8 4. Теперь подставляем получившееся число вместо "х": х=-1 8·(-1)+у=8 5.Далее решаем уравнение: х=-1 у=16 6. Делаем проверку: 8·(-1)+16=8 8=8- верно
1. При делении допустимы любые значения, кроме нуля, а значит решаем уравнение 7N+55 не равно0 7N не равно -55 N не равно -55/7 и т.к. -55/7 - не является целым, то значит модно утверждать, что может принимать любые значения. 2. Т.к. у квадрата все стороны равны, а нам надо разделить его на прямоугольники 1х4, то верно было предположить, что хотя бы одна сторона квадрата должна разделиться на 1 и на 4. Но т.к. у квадрата все стороны равны, достаточно проверить всего одну сторону. 2018/1=2018 - целое число 2018/4=504,5 - число не целое, а значит и разделить поровну нельзя 3. Последнее не знаю, прости :[
(12х+у=4)·(-1) это нужно для того, чтобы убрать одну переменную.
Получается:
8х+у=8
-12х-у=-4
2. Теперь складываем верхние и нижние "х ", потом "у" и потом числа:
⇒8х+(-12х), у+(-у), 8+(-4)
Получилось:
-4х=4 (далее решаем уравнение)
х=-1
3. Следующим действием восстанавливаем запись системы:
Вначале пишем х=-1, а за второе уравнение принимаем любое понравившееся: 8х+у=8 или 12х+у=4
Я выбрала 1-ое:
х=-1
8х+у=8
4. Теперь подставляем получившееся число вместо "х":
х=-1
8·(-1)+у=8
5.Далее решаем уравнение:
х=-1
у=16
6. Делаем проверку:
8·(-1)+16=8
8=8- верно
12·(-1)+16=4
4=4- верно
7N+55 не равно0
7N не равно -55
N не равно -55/7
и т.к. -55/7 - не является целым, то значит модно утверждать, что может принимать любые значения.
2. Т.к. у квадрата все стороны равны, а нам надо разделить его на прямоугольники 1х4, то верно было предположить, что хотя бы одна сторона квадрата должна разделиться на 1 и на 4. Но т.к. у квадрата все стороны равны, достаточно проверить всего одну сторону. 2018/1=2018 - целое число
2018/4=504,5 - число не целое, а значит и разделить поровну нельзя
3. Последнее не знаю, прости :[