В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
innalemesh1
innalemesh1
13.02.2023 18:12 •  Алгебра

Докажите, что функция: а) f(x)=x^2-2x убывает на промежутке (-∞; 1].

Показать ответ
Ответ:
нюша305
нюша305
03.10.2020 23:41
ответ:

Что и требовалось доказать!

Объяснение:

Нужно доказать, что:

функция f(x)={x}^{2}-2x убывает на промежутке (-\infty; \: 1]

1. Найдём производную данной функции:

f'(x)=({x}^{2}-2x)'=({x}^{2})'-(2x)'=(2\cdot{x}^{2-1})-(2\cdot1)=2x-2

2. Найдём критические (стационарные) точки:

2x-2=0 \Rightarrow 2x = 2 \Rightarrow x = 2 : 2 \Rightarrow x = 1

3. Исследуем критические точки на экстремум (см вложение).

--------------------------------------------------------------------------------------------------

4. Функция убывает на луче (-\infty; \: 1]. Что и требовалось доказать!


Докажите, что функция: а) f(x)=x^2-2x убывает на промежутке (-∞; 1].
Докажите, что функция: а) f(x)=x^2-2x убывает на промежутке (-∞; 1].
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота