В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Докажите, что квадратный корень из 11 является иррациональным числом

Показать ответ
Ответ:
serepromskaya
serepromskaya
24.05.2020 07:59

Предположим обратное: √11   -    рациональное число, тогда по определению

рац. числа √11 можно представить в виде несокаратимой дроби   m/n
где m и n -  целые числа.

                                              √11 = m/n

Возведем в квадрат обе части равенства:   11 = m²/n², или m²  = 11n²   =>

m²  делится на 11, а т.к. 11  -   простое, следовательно,   m  тоже делится на 11, откуда  m = 11k,

тогдаm² = 121k²     или 121k²= 11n²   => 11k² = n²   то есть  n²  делится на 11,

а значит,а т.к. 11  -   простое,  то  n   делится на на 11, следовательно, числа m  и  n  имеют общий делитель 11, а следовательно дробь m/n  -  сократима,  что противоречит определению рационального числа. Таким образом, предположение о том, что √11  является рац. числом неверно, следовательно √11  -  иррациональное.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота