1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
60/х -время,потраченное на путь из А в В
обратный путь
1 ч ехал со скоростью х км/ч,значит
х(км)-путь,которые проехал за 1 час
60-х -осталось проехать
х+4 км/ч - скорость
(60-х)/(х+4) -время движения со скоростью х+4 км/ч
20 мин=1/3 ч-остановка
всего на обратный путь он потратил
1 + 1/3 +(60-х)/(х+4)
составим уравнение
1 1/3+(60-х)/(х+4)=60/х умножим на 3х(х+4)
4х(х+4)+3х(60-х)=180(х+4)
4х²+16х+180х-3х²-180х-720=0
х²+16х-720=0
D=16²+4*720=3 136
√D=56
x1=(-16-56)/2=-36 км/ч не подходит
x2=(-16+56)/2=20 (км/ч) -искомая скорость
ответ:20 км/ч.