В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Grelil55
Grelil55
12.01.2020 20:35 •  Алгебра

Докажите, что наклонная асимптота графика функции параллельна касательной к графику в точке с абциссой заранее огромное

Показать ответ
Ответ:
bts23
bts23
28.09.2020 21:16
Наклонной асимптотой и касательной является прямая вида:
у=kх+b, где k-угловой коэффициент прямой.
Геометрический смысл производной:
k=tgα=f '(x₀) 
чтобы прямые были параллельными, необходимо и достаточно, чтобы соответственные углы были равны, то есть:
α=β ⇒ tgα=tgβ ⇒ k₁=k₂

если функция задаётся дробью в которой в числителе и знаменателе стоят многочлены, то наклонную асимптоту можно найти делением числителя на знаменатель столбиком и то что получится в частном и будет наклонная асимптота (см.фото 1) у=kx+b
y=x+2 ⇒ k₁=1
или в общем виде найти через предел (см. фото 2)

y= \sqrt{x} \\ y'= \frac{1}{2 \sqrt{x_0} } = \frac{1}{2 \sqrt{0.25} } = \frac{1}{2*0.5}=1 \\ y'=tg \ \beta =k _2 \\ k_2=1 \\

Итак, k₁=k₂=1, следовательно данные наклонная асимптота и касательная параллельны - ч.т.д
Докажите, что наклонная асимптота графика функции параллельна касательной к графику в точке с абцисс
Докажите, что наклонная асимптота графика функции параллельна касательной к графику в точке с абцисс
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота