Заданное выражение записываем в виде функции: у = 5х + 1 - ((6х-3)/х) = 5х + 1 - 6 + (3/х) = 5х - 5 + (3/х). Так как переменная есть в знаменателе, то график такой функции - гиперболическая кривая. Найдём производную этой функции. y' = 5 - (3/x²) и приравняем её нулю. 5 - (3/x²) = 0. (5x² - 3)/x² = 0. Достаточно приравнять нулю числитель. 5x² - 3 = 0. x² = 3/5. x = +-√(3/5). Имеем 2 значения точек экстремума. Подставим их в функцию и находим 2 значения: у = -5 + 2√15 ≈ 2,7459667, у = -5 - 2√15 ≈ -12,745967. В этих точках касательная к графику параллельна оси Ох и функция достигает предельных значений. Получаем область допустимых значений функции: x ≤ -12,745967, x ≥ 2,7459667. Эти же значения можно записать так: x ≤ -5 - 2√15, x ≥ -5 + 2√15.
Надо воспользовать тем, что наименьший положительный период синуса и косинуса равен 2π, а тангенса и котангенса — π. Воспользоваться — значит представить исходную функцию, скажем, в виде f(sin kx), где f — монотонная функция (принимающая каждое своё значение только один раз) . Тогда период равен 2π/k. 1.42. Период равен 2π. 1.44. cos² 3x = (cos 6x + 1)/2, поэтому период равен 2π/6 = π/3. 1.46. lg |sin x| = lg √(sin² x) = ½ lg ((1 – cos 2x)/2), поэтому период равен 2π/2 = π. 1.48. sin^4 x + cos^4 x = (cos² x + sin² x)² – 2 sin² x cos² x = 1 – ½ sin² 2x = 1 – (1 – cos 4x)/4, период равен 2π/4 = π/2. 1.50. |cos(x/2)| = √(cos²(x/2)) = √((cos x + 1)/2), период равен 2π.
у = 5х + 1 - ((6х-3)/х) = 5х + 1 - 6 + (3/х) = 5х - 5 + (3/х).
Так как переменная есть в знаменателе, то график такой функции - гиперболическая кривая.
Найдём производную этой функции.
y' = 5 - (3/x²) и приравняем её нулю.
5 - (3/x²) = 0.
(5x² - 3)/x² = 0. Достаточно приравнять нулю числитель.
5x² - 3 = 0.
x² = 3/5.
x = +-√(3/5).
Имеем 2 значения точек экстремума. Подставим их в функцию и находим 2 значения:
у = -5 + 2√15 ≈ 2,7459667,
у = -5 - 2√15 ≈ -12,745967.
В этих точках касательная к графику параллельна оси Ох и функция достигает предельных значений.
Получаем область допустимых значений функции:
x ≤ -12,745967, x ≥ 2,7459667.
Эти же значения можно записать так:
x ≤ -5 - 2√15, x ≥ -5 + 2√15.
1.42. Период равен 2π.
1.44. cos² 3x = (cos 6x + 1)/2, поэтому период равен 2π/6 = π/3.
1.46. lg |sin x| = lg √(sin² x) = ½ lg ((1 – cos 2x)/2), поэтому период равен 2π/2 = π.
1.48. sin^4 x + cos^4 x = (cos² x + sin² x)² – 2 sin² x cos² x = 1 – ½ sin² 2x = 1 – (1 – cos 4x)/4, период равен 2π/4 = π/2.
1.50. |cos(x/2)| = √(cos²(x/2)) = √((cos x + 1)/2), период равен 2π.