Ранее было доказано, что и p четно,изначально предполагалось, что взятая дробь p/q несократима.Если же и p, и q четные числа, то образованную ими дробь можно сократить на 2. Т. е. приходят к противоречию с условием и на этом основании делают вывод, что нет рациональной дроби, квадрат которой может быть равен 2.