Формула площади трапеции S=mh=(AB+CD/2)h Зная радиус вписанной окружности, мы устанавливаем, что h=2r=6 Далее по т. о касательных, а так же зная, что трапеция равнобокая, мы имеем AC=12, AB=CD=x+6 BC=2x Находим по формуле длину отрезка между высотой из угла при меньшем основании и углом при большем основании: АС-ВС/2 = 6-х Так как высота - перпендикуляр, можно утверждать, что по т. Пифагора: (x-6)^2+h^2=(x+6)^2 т. е. 36+12х+х^2-36+12x-x^2=h^2 => 24x=36 => x=1.5 Далее вычисляем основания и считаем площадь: (12+3/2)*6=45 ответ: S=45 ед^2
(х + 35) - скорость автомобилиста
2 ч 48 мин = 2,8 час
60 / х - 60 / (х + 35) = 2,8
60 * (х + 35) - 60 * х = 2,8 *(х + 35) * х
60х + 2100 - 60х = 2,8х^2 +98x
2.8x^2 +98x - 2100 = 0
x^2 + 35x - 750 = 0 Найдем дискриминант D Квадратного уравнения
D = 35^2 - 4 * 1 * (- 750) = 1225 + 3000 = 4225 ; sqrt 4225 = 65
Найдем корни уравнения : 1 - ый = (- 35 + 65) / 2 * 1 = 30/2 = 15
2 - ой = (- 35 - 65) / 2 = - 100 / 2 = - 50 . Скорость не может быть меньше 0 , поэтому подходит 1 - ый корень , Скорость велосипедиста равна 15 км/ч
Далее по т. о касательных, а так же зная, что трапеция равнобокая, мы имеем AC=12, AB=CD=x+6 BC=2x Находим по формуле длину отрезка между высотой из угла при меньшем основании и углом при большем основании: АС-ВС/2 = 6-х Так как высота - перпендикуляр, можно утверждать, что по т. Пифагора: (x-6)^2+h^2=(x+6)^2 т. е. 36+12х+х^2-36+12x-x^2=h^2 => 24x=36 => x=1.5 Далее вычисляем основания и считаем площадь: (12+3/2)*6=45 ответ: S=45 ед^2