В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Vitalikebati
Vitalikebati
11.09.2020 15:49 •  Алгебра

Докажите, что при любом натуральном n выражение 5n³ -5n делится на 30 решить 7 класс 13

Показать ответ
Ответ:
albinashav
albinashav
21.09.2020 12:25
Разложим на множители:
5n³-5n = 5n×(n²-1) = 5×n ×(n-1)(n+1)= 5×(n-1)×n×(n+1)
Мы видим, что выражение кратно 5 , т.к. один из множителей 5.
(n-1)n - делится на 2 , т.к. два последовательных натуральных числа.
(n-1); n ; (n+1) - три последовательных числа ⇒ одно из них -кратно 3.
Получается , что доказали - выражение делится  30 (2×3×5).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота