В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
netunikaa
netunikaa
08.11.2022 07:59 •  Алгебра

Докажите,что при любом значении р уравнение х²+рх+р-3=0 имеет два корня

Показать ответ
Ответ:
яналапа
яналапа
08.10.2020 19:11
Чтобы найти корни х²+рх+р-3=0 надо найти его дискриминант
D₁ = b² - 4ac = p² - 4*1*(p-3) = p² - 4p +12
если дискриминант D₁ положителен, то будет два решения.

Поэтому осталось доказать, что уравнение p² - 4p +12 всегда больше нуля
p² - 4p +12 > 0 , т.е. не имеет корней
или иначе его дискриминант D₂ отрицательный
D₂ = b² - 4ac = (-4)² - 4*1*12 = 16 - 48 = -32
значит уравнение p² - 4p +12  ( которое равно D₁ )  всегда положительно
поэтому всегда существуют два корня исходного уравнения х²+рх+р-3=0
D₁ > 0 при любых p
x₁ = ( -b + √D₁ ) / 2a
x₂ = ( -b  - √D₁ ) / 2a
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота