1) Сначала находишь производную. Она выглядит следующим образом: f ' (x) = x^3 - x^2 + x Потом, т.к. тебе дано f ' (3), необходимо просто вместо x подставить 3: f ' (3) = 3^3 - 3^2 + 3 = 21
2) Этот пример не разрешается относительно t Если t=const, то все обращается в ноль Если значению t придается какое-либо значение функции с переменной x, то просто подставь это выражение с x вместо t, упрости и следуй алгоритму выше Ну а если же t это и есть x, То решение примет вид: f ' (x) = f ' (1) = = (Приводим к одному знаменателю 10) = = 3,5
f ' (x) = x^3 - x^2 + x
Потом, т.к. тебе дано f ' (3), необходимо просто вместо x подставить 3:
f ' (3) = 3^3 - 3^2 + 3 = 21
2) Этот пример не разрешается относительно t
Если t=const, то все обращается в ноль
Если значению t придается какое-либо значение функции с переменной x, то просто подставь это выражение с x вместо t, упрости и следуй алгоритму выше
Ну а если же t это и есть x, То решение примет вид:
f ' (x) =
f ' (1) = = (Приводим к одному знаменателю 10) = = 3,5
4
Запишем условие:
lgx + lg(x - 2) = lg(12 - x)
Складываем логарифмы в левой части, тогда:
lgx(x - 2) = lg(12 - x)
Так как 1 основание, решаем как обычное уравнение:
х(х - 2) = 12 - х
Раскороем скобки слева, откуда:
х^2 - 2х = 12 - х
Переносим правую часть влево, тогда:
х^2 - 2х - 12 + х = 0
Приводим подобные:
х^2 - х - 12 = 0
Решаем через дискриминант:
Находим дискриминант:
D = b^2 - 4ac
D = 1 - 4*1*(-12)
D = 1 - (-48)
D = 1 + 48 = 49
sqrt(D) = sqrt(49) = 7
x1 = (-b + sqrt(D))/2a = (1 + 7)/2 = 8/2 = 4
x2 = (-b - sqrt(D))/2a = (1 - 8)/2 = -3,5 - посторонний корень
Проверка:
Проверяем х1:
lg4 + lg(4 - 2) = lg(12 - 4)
lg4 + lg2 = lg8
Складываем логарифмы слева, тогда:
lg(4*2) = lg8
lg8 = lg8
Следовательно, х1 является действительным (правильным) корнем уравнения.
Проверяем х2:
lg(-3,5) + lg(-3,5 - 2) = lg(12 - 3,5)
lg(-3,5) + lg(-5,5) = lg8,5
Складываем логарифмы в левой части, тогда:
lg(19,25) > lg8,5
Следовательно, х2 посторонний корень данного уравнения.