В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
яждупомощи
яждупомощи
22.06.2022 13:30 •  Алгебра

Докажите, что при любых значениях x и y имеет место неравенство x^2 + 10y^2 - 6xy +10 x - 26 y + 30 > 0

Показать ответ
Ответ:
azerzhanovaa
azerzhanovaa
23.05.2020 17:33

x^2 + 10y^2 - 6xy +10 x - 26 y + 30>0

перепишем неравенство в виде

x^2 - 2x(3y-5) +(3y-5)^2-(3y-5)^2+ 10y^2 - 26 y + 30>0

используя формулу квадрата двучлена

(x-3y+5)^2 -9y^2+30y-25+ 10y^2 - 26 y + 30>0

сводя подобные члены

(x-3y+5)^2 +y^2 +4 y + 5>0

перепишем в виде

(x-3y+5)^2 +y^2 +4 y + 4+1>0

группируя

(x-3y+5)^2 +(y^2 +4 y + 4)+1>0

используя формулу квадрата двучлена

(x-3y+5)^2 +(y +2)^2 +1>0

 

квадрат любого выражения неотрицателен,

сумма двух неотрицатеьных выражений неотрицательна

сумма неотрицательного выражения и положительного величина положительная

поэтому (x-3y+5)^2 +(y +2)^2 +1>0 верно для любых значений x и y, а значит

и исходное неравенство x^2 + 10y^2 - 6xy +10 x - 26 y + 30 >0

Доказано

 

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота