Чтобы найти вероятность бракованных деталей, нам сложные вычисления не нужны. Если при 500 деталях - 9 бракованных, то при 1000 (500×2) деталях - 9×2бракованных = 18 бракованных деталей.
4
Площадь круга = πr², количество точек=1, количество бросаний=1
Площадь круга = πr²=12,56 см² против Площади квадрата = 16 см²
Площадь круга составляет 78,5% от площади квадрата - это и есть наша вероятность попадания в круг.
Арифм, прогрессия. Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3 т.е. число можно представить в виде аn=4n+3. Найдем последний двузначный член прогрессии, т.к. наименьшее трехзначное число равно 100, получим 4n+3<100 4n<97 n<24,25 Т.к. n – целое натуральное число, следовательно, согласно неравенству n<24,25, последний двузначный член имеет номер 24, найдем номер первого двузначного числа 4n+3≥10 4n≥7 n≥1,75 номер первого двузначного числа, , согласно неравенству n≥1,75, первый двузначный член имеет номер 2, найдем необходимые члены прогрессии а₂=4*2+3=11 а₂₄=4*24+3=99 Сумма n последовательных членов арифметической прогрессии начиная с члена : Sn=(а₁+аn)*n/2 т.к. надо найти сумму со 2 по 24 член, рассмотрим их как последовательность с 1 по 23 члены, получим S₂₃=(11+99)*23/2=1265 Удачи!
3
А P=m/n, где P - вероятность; m - количество удачных попыток; n - количество попыток всего.
Следовательно: Ρ= 9 (m)/500 (n) = 9/500=0.018 (1.8%)
Чтобы найти вероятность бракованных деталей, нам сложные вычисления не нужны. Если при 500 деталях - 9 бракованных, то при 1000 (500×2) деталях - 9×2бракованных = 18 бракованных деталей.
4
Площадь круга = πr², количество точек=1, количество бросаний=1
Площадь круга = πr²=12,56 см² против Площади квадрата = 16 см²
Площадь круга составляет 78,5% от площади квадрата - это и есть наша вероятность попадания в круг.
Объяснение:
Арифм, прогрессия. Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
т.е. число можно представить в виде аn=4n+3. Найдем последний двузначный член прогрессии, т.к. наименьшее трехзначное число равно 100, получим
4n+3<100
4n<97
n<24,25
Т.к. n – целое натуральное число, следовательно, согласно неравенству n<24,25, последний двузначный член имеет номер 24, найдем номер первого двузначного числа
4n+3≥10
4n≥7
n≥1,75
номер первого двузначного числа, , согласно неравенству n≥1,75, первый двузначный член имеет номер 2, найдем необходимые члены прогрессии
а₂=4*2+3=11
а₂₄=4*24+3=99
Сумма n последовательных членов арифметической прогрессии начиная с члена :
Sn=(а₁+аn)*n/2
т.к. надо найти сумму со 2 по 24 член, рассмотрим их как последовательность с 1 по 23 члены, получим
S₂₃=(11+99)*23/2=1265
Удачи!