В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Walentinawella12
Walentinawella12
27.05.2021 00:48 •  Алгебра

Докажите, что сумма n последовательных нечетных чисел делится на n.

Показать ответ
Ответ:
katka55555
katka55555
24.05.2020 04:53

Ну если И так просите Пусть a[0] = 2k + 1 - первое число в последовательности n нечетных. Тогда вся последовательность задается формулой: a[n] = a[n-1] + 2 = а[0] + (n - 1)*2, где 2 - разность между двумя ближайщими нечетными числами. Это формула для n-го члена арифметической прогрессии с разностью d = 2 и первым членом a[0] = 2k + 1.

 

Сумма первых n членов этой прогрессии равна S(n) = (a[0] + a[n-1])*n/2 = (a[0] + a[0] + (n - 2)*2)*n/2 = (2*(2k + 1) + (n - 2)*2)*n/2 = n*(2k + n - 1).

 

Следовательно, S(n) = n*(2k + n - 1) = n*p делится на n.

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота