В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
DavidWorld
DavidWorld
07.08.2022 15:28 •  Алгебра

Докажите, что значение выражения является целым числом. ​


Докажите, что значение выражения является целым числом. ​

Показать ответ
Ответ:
помидор2324
помидор2324
15.01.2023 18:25

Приравняем правые части:

\sqrt{x}=-2x+b

Т.к. в левой части арифметический квадратный корень, то x\geq0 и -2x+b\geq0, следовательно b\geq2x, а т.к. x\geq0, то и b\geq0.

Теперь возведем обе части в квадрат:

x^2=4x^2-4xb+b^2

Соберем все справа:

3x^2-4xb+b^2=0

Для того, чтобы это уравнение имело корни, нужно чтобы дискриминант был неотрицательным:

D=(-4b)^2-4*4*b^2=0

Следовательно b может быть любым числом, но помня, что b должно быть неотрицательным, получаем ответ:

при любом неотрицательном значении b.

Графики: http://yotx.ru/default.aspx?clr0=000000&exp0=sqrt%28x%29&clr1=666666&exp1=-2x%2b10&mix=-10&max=10&asx=on&u=mm&nx=x&aiy=on&asy=on&ny=y&iw=600&ih=400&ict=png&aa=on

0,0(0 оценок)
Ответ:
vika2069
vika2069
02.02.2021 00:51

Выполнив деление получим:

\frac{(2x + 3\sqrt{x} - 2)(5\sqrt{x} - 2x + 3)}{(2 + \sqrt{x})(3 - \sqrt{x})} - 4x

Введём замену. Пусть \sqrt{x} = t ≥ 0, тогда x = t^{2}.

Перепишем данное выражение с учётом замены. Получим:

\frac{(2t^{2} + 3t - 2)(5t - 2t^{2} + 3)}{(2 + t)(3 - t)} - 4x

 Найдём корни всех квадратных трёхчленов в числителе и разложим их на множители:

 

 2t^{2} + 3t - 2 = 0 \\ D = b^{2} - 4ac = 9 + 16 = 25 \\ x1 = \frac{-3 - 5}{4} = -2 \\ x2 = \frac{-3+5}{4} = 0.5 \\ \\

 

Разложение будет иметь вид:  2(t + 2)(t - 0.5)

Аналогично поступаем со вторым:

-2t^{2} + 5t + 3 = 0 \\ D = b^{2} - 4ac = 25 + 24 = 49 \\ x1 = 3; x2 = -0.5

Разложение имеет вид: -2(t - 3)(t + 0.5)

Подставим вместо трёхчленов их разложения и проведём некторые преобразования, но оговоримся, что поскольку преобразование идёт лишь при допустимых значениях переменных, то t≥0; t≠3:

 

\frac{-4(t+2)(t-0.5)(t-3)(t+0.5)}{(2+t)(3-t)} - 4t^{2} = \frac{-4(t-0.5)(t+0.5)(t-3)}{3-t} - 4t^{2} = \frac{4(t^{2} - 0.25)(3-t)}{3 - t} - 4t^2 \\ = 4t^{2} - 1 - 4t{2} = -1

 

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота