Сравним значения функций в данных точках. Для этого достаточно посмотреть на знак их разности : если он положительный, то ; если равен нулю, то значения равны; иначе .
По предположению, , поэтому вторая скобка отрицательна.
Если , то сумма меньше -16, тогда первая скобка тоже отрицательна, а всё произведение положительно и Получили, что большему значению аргумента соответствует большее значение функции, тогда на отрезке функция возрастает.Аналогично, для произведение отрицательно. Здесь большему значению аргумента соответствует меньшее значение значение функции, по определению это значит, что функция убывает.
В решении.
Объяснение:
№1
Какая из следующих функций является квадратичной, ее выписать и указать ее коэффициенты:
а) у=х²+2-4х ; б) у=х²+22; в) у=-х-43х г) у=-3х²+27-5х; д) у=2-4х.
Квадратичные функции вида у = ax² + bx + c;
В квадратных уравнениях a называется первым коэффициентом (a ≠ 0), b называется вторым коэффициентом, c называется известным или свободным членом.
у=х²+2-4х; первый коэффициент = 1; второй = -4; свободный член = 2;
у=х²+22; первый коэффициент = 1; второй = 0; свободный член = 22;
у=-3х²+27-5х; первый коэффициент = -3; второй = -5; свободный член = 27.
№2
Найти координаты вершины параболы по формуле:
а) у = -х² + 2 - 4х;
б) у = х² + 22х - 3;
в) у = -х - 43х² + 5;
г) у = -3х² + 27 - 5х;
д) у = 12 - 4х².
Формула х₀ = -b/2a; потом значение х₀ подставить в уравнение функции и вычислить у₀. (х₀; у₀) - координаты вершины параболы.
а) у = -х² - 4х + 2;
х₀ = 4/-2
х₀ = -2;
у₀ = -(-2)² - 4 * (-2) + 2 = -4 + 8 + 2 = 6;
у₀ = 6;
Координаты вершины параболы: (-2; 6);
б) у = х² + 22х - 3;
х₀ = -22/2
х₀ = -11;
у₀ = (-11)² + 22 * (-11) - 3 = 121 - 242 - 3 = -124;
у₀ = -124;
Координаты вершины параболы: (-11; -124);
в) у = - 43х² - х + 5;
х₀ = 1/-86
х₀ = -0,01;
у₀ = -43 * (-0,01)² - (-0,01) + 5 = -0,0043 + 0,01 + 5 = 5,0057
у₀ = 5;
Координаты вершины параболы: (-0,01; 5);
г) у = -3х² - 5х + 27;
х₀ = 5/-6
х₀ = -5/6;
у₀ = -3 * (-5/6)² - 5 * (-5/6) + 27 = -25/12 + 25/6 + 27 = 349/12 = 29 1/12;
у₀ = 29 1/12;
Координаты вершины параболы: (-5/6; 29 1/12);
д) у = - 4х² + 12;
х₀ = 0/-8
х₀ = 0;
у₀ = -4 * 0² + 12
у₀ = 12;
Координаты вершины параболы: (0; 12),
№3
Составьте квадратный трехчлен ах²+вх+с, у которого:
а) а=3,в=-12,с=0; → 3х² - 12х;
б) а=1,в=0,с=4; → х² + 4;
в) а=-1,в=-1,с=114; → -х² - х + 114;
г)а=2,в=-1,с=0,5; → 2х² - х + 0,5;
д) а=-13,в=10,с=20; → -13х² + 10х + 20.
Возьмем две точки , , причем .
Им соответствуют значения функции и .
Сравним значения функций в данных точках. Для этого достаточно посмотреть на знак их разности : если он положительный, то ; если равен нулю, то значения равны; иначе .
По предположению, , поэтому вторая скобка отрицательна.
Если , то сумма меньше -16, тогда первая скобка тоже отрицательна, а всё произведение положительно и Получили, что большему значению аргумента соответствует большее значение функции, тогда на отрезке функция возрастает.Аналогично, для произведение отрицательно. Здесь большему значению аргумента соответствует меньшее значение значение функции, по определению это значит, что функция убывает.