Для отрицательных a и b неравенство очевидно. Докажем для случая a,b>0:
Последнее неравенство выполняется для любых неотрицательных a и b, что с учетом ОДЗ исходного неравенства говорит о том, что оно справедливо для любых положительных a и b, причем равенство достигается при a=b>0
Объяснение:
Для отрицательных a и b неравенство очевидно. Докажем для случая a,b>0:
Последнее неравенство выполняется для любых неотрицательных a и b, что с учетом ОДЗ исходного неравенства говорит о том, что оно справедливо для любых положительных a и b, причем равенство достигается при a=b>0
(см. объяснение)
Объяснение:
Рассмотрим внимательно получившееся выражение: это формула сокращённого умножения: разность квадратов. Учитывая это, перепишем выражение:
Выражение в квадрате всегда не отрицательно, поэтому равенство выше всегда верно.
Доказано.