А) a² + b² - 16a + 14b + 114 > 0 a² - 16a + b² + 14b + 114 > 0 Выделим полные квадраты a² - 16a + 64 - 64 + b² + 14b + 49 - 49 + 114 > 0 (a - 8)² + (b + 7)² - 113 + 114 > 0 (a - 8)² + (b + 7)² > -1 Сумма двух квадратов будет принимать неотрицательные значения, значит, неравенство верно при любых a и b.
2) x² + y² + 10 ≥ 6x - 2y x² - 6x + y² + 2y + 10 ≥ 0 Снова выделим полные квадраты: x² - 6x + 9 - 9 + y² + 2y + 1 - 1 + 10 ≥ 0 (x - 3)² + (y + 1)² + 10 - 10 ≥ 0 (x - 3)² + (y + 1)² ≥ 0 Как было выше сказано, сумма двух квадратов принимает неотрицательные значения, значит, неравенство верно при любых x и y.
3) c² + 5d² + 4cd - 4d + 4 ≥ 0 разложим 5d² как 4d² + d² c² + 4cd + 4d² + d² - 4d + 4 ≥ 0 Теперь свернём по формулам квадрата суммы/разности: (c + 2d)² + (d - 2)² ≥ 0 Опять же сумма двух квадратов будет принимать неотрицательные значения при любых c и d.
a² - 16a + b² + 14b + 114 > 0
Выделим полные квадраты
a² - 16a + 64 - 64 + b² + 14b + 49 - 49 + 114 > 0
(a - 8)² + (b + 7)² - 113 + 114 > 0
(a - 8)² + (b + 7)² > -1
Сумма двух квадратов будет принимать неотрицательные значения, значит, неравенство верно при любых a и b.
2) x² + y² + 10 ≥ 6x - 2y
x² - 6x + y² + 2y + 10 ≥ 0
Снова выделим полные квадраты:
x² - 6x + 9 - 9 + y² + 2y + 1 - 1 + 10 ≥ 0
(x - 3)² + (y + 1)² + 10 - 10 ≥ 0
(x - 3)² + (y + 1)² ≥ 0
Как было выше сказано, сумма двух квадратов принимает неотрицательные значения, значит, неравенство верно при любых x и y.
3) c² + 5d² + 4cd - 4d + 4 ≥ 0
разложим 5d² как 4d² + d²
c² + 4cd + 4d² + d² - 4d + 4 ≥ 0
Теперь свернём по формулам квадрата суммы/разности:
(c + 2d)² + (d - 2)² ≥ 0
Опять же сумма двух квадратов будет принимать неотрицательные значения при любых c и d.