Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3.
Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π.
Это в том случае, если косинус х.( без скобок).
Based on two different cases:
x
=
π
6
,
5
π
6
or
3
π
2
Look below for the explanation of these two cases.
Explanation:
Since,
cos
x
+
sin
2
x
=
1
we have:
cos
2
x
=
1
−
sin
2
x
So we can replace
cos
2
x
in the equation
1
+
sin
x
=
2
cos
2
x
by
(
1
−
sin
2
x
)
⇒
2
(
1
−
sin
2
x
)
=
sin
x
+
1
or,
2
−
2
sin
2
x
=
sin
x
+
1
or,
0
=
2
sin
2
x
+
sin
x
+
1
−
2
or,
2
sin
2
x
+
sin
x
−
1
=
0
using the quadratic formula:
x
=
−
b
±
√
b
2
−
4
a
c
2
a
for quadratic equation
a
x
2
+
b
x
+
c
=
0
we have:
sin
x
=
−
1
±
√
1
2
−
4
⋅
2
⋅
(
−
1
)
2
⋅
2
or,
sin
x
=
−
1
±
√
1
+
8
4
or,
sin
x
=
−
1
±
√
9
4
or,
sin
x
=
−
1
±
3
4
or,
sin
x
=
−
1
+
3
4
,
−
1
−
3
4
or,
sin
x
=
1
2
,
−
1
Case I:
sin
x
=
1
2
for the condition:
0
≤
x
≤
2
π
we have:
x
=
π
6
or
5
π
6
to get positive value of
sin
x
Case II:
sin
x
=
−
1
we have:
x
=
3
π
2
to get negative value of
sin
x
Answer link
Объяснение: